The staufen/pumilio Pathway Is Involved in Drosophila Long-Term Memory

نویسندگان

  • Josh Dubnau
  • Ann-Shyn Chiang
  • Lori Grady
  • Jody Barditch
  • Scott Gossweiler
  • John McNeil
  • Patrick Smith
  • Francois Buldoc
  • Rod Scott
  • Uli Certa
  • Clemens Broger
  • Tim Tully
چکیده

BACKGROUND Memory formation after olfactory learning in Drosophila displays behavioral and molecular properties similar to those of other species. Particularly, long-term memory requires CREB-dependent transcription, suggesting the regulation of "downstream" genes. At the cellular level, long-lasting synaptic plasticity in many species also appears to depend on CREB-mediated gene transcription and subsequent structural and functional modification of relevant synapses. To date, little is known about the molecular-genetic mechanisms that contribute to this process during memory formation. RESULTS We used two complementary strategies to identify these genes. From DNA microarrays, we identified 42 candidate memory genes that appear to be transcriptionally regulated in normal flies during memory formation. Via mutagenesis, we have independently identified 60 mutants with defective long-term memory and have defined molecular lesions for 58 of these. The pumilio translational repressor was found from both approaches, along with six additional genes with established roles in local control of mRNA translation. In vivo disruptions of four genes--staufen, pumilio, oskar, and eIF-5C--yield defective memory. CONCLUSIONS Convergent findings from our behavioral screen for memory mutants and DNA microarray analysis of transcriptional responses during memory formation in normal animals suggest the involvement of the pumilio/staufen pathway in memory. Behavioral experiments confirm a role for this pathway and suggest a molecular mechanism for synapse-specific modification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory

Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...

متن کامل

The maternal gene nanos has a central role in posterior pattern formation of the Drosophila embryo.

A group of maternal genes, the posterior group, is required for the development of the abdominal region in the Drosophila embryo. We have used genetic as well as cytoplasmic transfer experiments to order seven of the posterior group genes (nanos, pumilio, oskar, valois, vasa, staufen and tudor) into a functional pathway. An activity present in the posterior pole plasm of wild-type embryos can r...

متن کامل

Developmental and regional expression and localization of mRNAs encoding proteins involved in RNA translocation.

RNA localization is a regulated component of gene expression of fundamental importance in development and differentiation. Several RNA binding proteins involved in RNA localization during development in Drosophila have been identified, of which Y14, Mago, Pumilio, and IMP-1 are known to be expressed in adult mammalian intestine. The present study was undertaken to define the developmental and r...

متن کامل

P18: Signaling Pathway in Long-Term Potentiation

Synaptic plasticity in the central nervous system (CNS) of mammals has been discussed for many years. Several forms of synaptic plasticity of mammal’s CNS have been identified, such as those that occur in long-term potentiation (LTP). Different types of LTP have been observed in distinctive areas of the CNS of mammals. The hippocampus is one of the most important areas in the CNS that pla...

متن کامل

P26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory

Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2003